
© Copyright 2002ESEG, UMD

Experimentation in
Software Engineering

Victor R. Basili

Experimental Software Engineering Group
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland

and
Fraunhofer Center for Experimental Software Engineering -

Maryland

© Copyright 2002ESEG, UMD

Motivation

• Software development teams need to understand the right models and
techniques to support their projects. For example:

– When are peer reviews more effective than functional testing?
– When should you use a procedural approach to code reviewing?
– How should you tailor a lifecycle model for your environment?

• Too often, such decisions are based on anecdote, hearsay, or hype

• How do other disciplines build knowledge about
– the elements of their discipline, e.g., their products and processes
– the relationships between those elements

© Copyright 2002ESEG, UMD

Evolving Knowledge
Model Building, Experimenting, and Learning

Understanding a discipline involves building models,
e.g., application domain, problem solving processes

Checking our understanding is correct involves
- testing our models
- experimentation

Analyzing the results of the experiment involves learning, the
encapsulation of knowledge and the ability to change and refine
our models over time

The understanding of a discipline evolves over time

Knowledge encapsulation allows us to deal with higher levels of
abstraction

This is the paradigm that has been used in many fields,
e.g., physics, medicine, manufacturing.

© Copyright 2002ESEG, UMD

Evolving Knowledge
Model Building, Experimenting, and Learning

What do these fields have in common?

They evolved as disciplines when they began applying the cycle of
model building, experimenting, and learning

Began with observation and the recording of what was observed

Evolved to manipulating the variables and studying the effects of
change in the variables

What are the differences of these fields?

Differences are in the objects they study, the properties of those
object, the properties of the system that contain them, the
relationship of the object to the system, and the culture of the

This effects
how the models are built
how the experimentation gets done

discipline

© Copyright 2002ESEG, UMD

Software Engineering
The Nature of the Discipline

Like other disciplines, software engineering requires the cycle of
model building, experimentation, and learning

Software engineering is a laboratory science

The researcher’s role is to understand the nature of the processes,
products and the relationship between the two in the context of
the system

The practitioner’s role is to build “improved” systems, using the
knowledge available

More than the other disciplines these roles are symbiotic

The researcher needs laboratories to observe and manipulate the
- they only exist where practitioners build software systems

The practitioner needs to better understand how to build better
- the researcher can provide models to help

variables

systems

© Copyright 2002ESEG, UMD

Software Engineering
The Nature of the Discipline

Software engineering is development not production

The technologies of the discipline are human based

All software is not the same
- there are a large number of variables that cause differences
- their effects need to be understood

Currently,
- insufficient set of models that allow us to reason about the
- lack of recognition of the limits of technologies for certain
- there is insufficient analysis and experimentation

discipline
contexts

© Copyright 2002ESEG, UMD

What are the problems of interest in
software engineering?

Practitioners want
- the ability to control and manipulate project solutions

- based upon the environment and goals set for the project
- knowledge based upon empirical and experimental evidence

- of what works and does not work and under what conditions

Researchers want to understand
- the basic elements of the discipline, e.g., products, processes,
and their characteristics (build realistic models)
- the variables associated with the models of these elements
- the relationships among these models

Researchers need laboratories for experimentation
This will require a research plan that will take place over many years

- coordinating experiments
- evolving with new knowledge

© Copyright 2002ESEG, UMD

Software Engineering
Early Observation

Belady & Lehman ('72,'76)
- observed the behavior of OS 360 with respect to releases
- posed theories based on observation concerning entropy

The idea that you might redesign a system rather than continue to
change was a revelation

But, Basili & Turner ('75)
- observed that a compiler system
- being developed using an incremental development approach
- gained structure over time, rather than lost it

How can these seemingly opposing statements be true?

What were the variables that caused the effects to be different?
Size, methods, nature of the changes, context?

it

© Copyright 2002ESEG, UMD

Software Engineering
Early Observation

Walston and Felix ('79) identified 29 variables that had an effect on
software productivity in the IBM environment

Boehm ('81) observed that 15 variables seemed sufficient to
explain/predict the cost of a project across several environments

Bailey and Basili ('81) identified 2 composite variables that when
combined with size were a good predictor of effort in the SEL

There are numerous cost models with different variables

Why were the variables different?

What does the data tell us about the relationship of variables?

Which variable are relevant for a particular context?

What determines their relevance?

What are the ranges of the values variables and their effects?

environment

© Copyright 2002ESEG, UMD

Software Engineering
Early Observation

Basili & Perricone (‘84) observed that the defect rate of modules
shrunk as module size and complexity grew in the SEL

Seemed counter to folklore that smaller modules were better, but
- interface faults dominate
- developer tend to shrink size when they lose control

This result has been observed by numerous other organizations
But defect rate is only one dependent variable
What is the effect on other variables? What size minimizes the

Size/Complexity

Fault
Rate Actual

Hypothesized

Believed

environment

defect rate?

© Copyright 2002ESEG, UMD

Available Research Paradigms

Experimental paradigm:
- observing the world (or existing solutions)
- proposing a model or a theory of behavior (or better solutions)
- measuring and analyzing
- validating hypotheses of the model or theory (or invalidate
- repeating the procedure evolving our knowledge base

The experimental paradigms involve
- experimental design
- observation
- quantitative or qualitative analysis
- data collection and validation on the process or product being studied

© Copyright 2002ESEG, UMD

Quality Improvement Paradigm

Characterize the current project and its environment with respect to the
appropriate models and metrics

Set quantifiable goals for project and corporate success and improvement

Choose the appropriate project processes, supporting methods and tools

Execute the processes, construct the products, collect, validate and
analyze the data to provide real-time feedback for corrective action

Analyze the data to evaluate current practices, determine problems,
record findings, recommend improvements for future project

Package the experience in the form of updated and refined models and
save it in an experience base to be reused on future projects.

© Copyright 2002ESEG, UMD

Quality Improvement Paradigm

Characterize
& understand

Set
goals

Choose
processes,
methods,
techniques,
and tools

Package &
store experience

Analyze
results

Execute
process

Provide process
with feedback

Analyze
results

CorporateCorporate
learninglearning

ProjectProject
learninglearning

© Copyright 2002ESEG, UMD

The Experience Factory Organization

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

environment
characteristics

tailorable
knowledge,
consulting

project
analysis,
process

modification

data,
lessons
learned

© Copyright 2002ESEG, UMD

The Experience Factory Organization

A Different Paradigm

Project Organization Experience Factory
Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project

© Copyright 2002ESEG, UMD

Software Models and Measures
Perspectives

Characterize
Describe and differentiate software processes and products

Build descriptive models and baselines
Understand

Explain associations/dependencies between processes and products
Discover causal relationships
Analyze models

Evaluate
Assess the achievement of quality goals
Assess the impact of technology on products
Compare models

Predict
Estimate expected product quality and process resource consumption
Build predictive models

Motivate
Describe what we need to do to control and manage software
Build prescriptive models

© Copyright 2002ESEG, UMD

The Status of Model Building

Resource Models and Baselines,
e.g., local cost models, resource allocation models

Change and Defect Baselines and Models,
e.g., defect prediction models, types of defects expected for
application

Product Models and Baselines,
e.g., actual vs. expected product size and library access over time

Process Definitions and Models,
e.g., process models for Cleanroom, Ada

Method and Technique Evaluations,
e.g., best method for finding interface faults

Products, e.g., Ada generics for simulation of satellite orbits
Quality Models,

e.g., reliability models, defect slippage models, ease of change models
Lessons Learned, e.g., risks associated with an Ada development

© Copyright 2002ESEG, UMD

The Status of the Experimental Discipline

What kinds of studies have been performed?

Experiments can be
- controlled experiments
- quasi-experiments or pre-experimental designs

Controlled experiments, typically:
- small object of study
- in vitro
- a mix of both novices (mostly) and expert treatments

Sometimes, novice subjects used to “debug” the experimental

Quasi-experiments or Pre-experimental design, typically:
- large projects
- in vivo
- with experts

These experiments tend to involve a qualitative analysis
component, including at least some form of interviewing

design

© Copyright 2002ESEG, UMD

The Maturing of the Experimental Discipline

What kinds of studies have been performed?

Experiment Classes

#Projects

One More than one

of One Single Project Multi-Project
Variation

Teams

per More than Replicated Blocked
Project one Project Subject-Project

© Copyright 2002ESEG, UMD

The Maturing of the Experimental Discipline

How is experimentation maturing?

Signs of maturity in a field:
level of sophistication of the goals of an experiment
understanding interesting things about the discipline
a pattern of knowledge built from a series of experiments

Researchers appear to be
- asking more sophisticated questions
- studying relationships between processes/product characteristics
- doing more studies in the field than in the laboratory
- combining various experimental classes to build knowledge

© Copyright 2002ESEG, UMD

An Example:
The Evolution of Reading Techniques

We discuss a series of experiments
- begun at the University of Maryland and at NASA used to learn
about, evaluate, and evolve reading techniques
- replicated and evolved at various sites around the world

This example
- shows multiple experimental designs
- provides a combination of evaluation approaches
- offers insight into the effects of different variables on reading

The experiments start with
the early reading vs. testing experiments
to various Cleanroom experiments
to the scenario based reading techniques currently under study

© Copyright 2002ESEG, UMD

An Example:
The Evolution of Reading Techniques

Reading is a key technical activity for analyzing and constructing
software artifacts

Reading is a model for writing
Reading is critical for reviews, maintenance, reuse, ...

What is a reading technique?
a concrete set of instructions given to the reader saying how to read and
what to look for in a software product

More Specifically, software reading is
the individual analysis of a software artifact

e.g., requirements, design, code, test plans
to achieve the understanding needed for a particular task

e.g., defect detection, reuse, maintenance

© Copyright 2002ESEG, UMD

An Example:
The Evolution of Reading Techniques

Series of Studies

Projects

One More than one

of
Teams

per
Project

One 3. Cleanroom 4. Cleanroom
(SEL Project 1) (SEL Projects, 2,3,4,...)

More than 2. Cleanroom 1. Reading vs. Testing
one at Maryland 5. Scenario reading vs. ...

© Copyright 2002ESEG, UMD

EXPERIMENT
Blocked Subject Project Study

Analysis Technique Comparison

Technique Definition:

Code Reading vs Functional Testing vs Structural Testing
Compare with respect to:

fault detection effectiveness and cost
classes of faults detected

Experimental design:
Fractional factorial design

Environment:
University of Maryland (43) and then NASA/CSC (32)
Module size programs (145 - 365 LOC), seeded with faults
Cause-effect, in vitro, novices and experts

© Copyright 2002ESEG, UMD

Blocked Subject Project Study
Testing Strategies Comparison

Fractional Factorial Design

Code Reading Functional Testing Structural Testing
P1 P2 P3 P1 P2 P3 P1 P2 P3

S1 X X X
Advanced S2 X X X
Subjects :

S8 X X X
S9 X X X

Intermediate S10 X X X
Subjects :

S19 X X X
S20 X X X

Junior S21 X X X
Subjects :

S32 X X X

Blocking by experience level and program tested
NASA/CSC

© Copyright 2002ESEG, UMD

Blocked Subject Project Study
Analysis Technique Comparison

Some Results (NASA/CSC)

Code reading more
effective than functional testing
efficient than functional or structural testing

Different techniques more effective for different defect classes
code reading more effective for interface defects
functional testing more effective for control flow defects

Code readers assessed the true quality of product better than testers

After completion of study:
Over 90% of the participants thought functional testing worked best

Some Lessons Learned

Reading is effective/efficient; the particular technique appears important

The choice of techniques should be tailored to the defect classification

Developers don’t believe reading is better

© Copyright 2002ESEG, UMD

Blocked Subject Project Study
Analysis Technique Comparison

Based upon this study
reading was implemented as part of the SEL development process

But - reading appeared to have very little effect

Possible Explanations (NASA/CSC)

Hypothesis 1: People did not read as well as they should have as
they believed that testing would make up for their mistakes

Experiment: If you read and cannot test you do a more effective job
of reading than if you read and know you can test.

Hypothesis 2: there is a confusion between the reading technique
and the reading method

NEXT: Is there an approach with reading motivation and technique?
Try Cleanroom in a controlled experiment at the University of Maryland

© Copyright 2002ESEG, UMD

EXPERIMENT
Replicated Project Study

Cleanroom Study

Approaches:
Cleanroom process vs. non-Cleanroom process

Compare with respect to:
effects on the process product and developers

Experimental design:
15 three-person teams (10 teams used Cleanroom)

Environment:
University of Maryland
Electronic message system, ~ 1500 LOC
novice, in vitro, cause-effect

© Copyright 2002ESEG, UMD

Replicated Project Study
Cleanroom Evaluation

Some Results
Cleanroom developers

- more effectively applied off-line review techniques
- spent less time on-line and used fewer computer resources
- made their scheduled deliveries

Cleanroom product
- less complex
- more completely met requirements

Some Lessons Learned

Cleanroom developers were motivated to read better

Cleanroom/Reading by step-wise abstraction was effective and

NEXT: Does Cleanroom scales up? Will it work on a real project?
Can it work with changing requirements?
Try Cleanroom in the SEL

efficient

© Copyright 2002ESEG, UMD

EXPERIMENT
Single Project Study

First Cleanroom in the SEL
Approaches:

Cleanroom process vs. Standard SEL Approach

Compare with respect to:
effects on the effort distribution, cost, and reliability

Experimental design:
Apply to a live flight dynamics domain project in the SEL

Environment:
NASA/ SEL
40 KLOC Ground Support System
in vivo, experts, descriptive

© Copyright 2002ESEG, UMD

Single Project Study
First Cleanroom in the SEL

Some ResultsCleanroom was
- effective for 40KLOC

- failure rate reduced by 25%
- productivity increased by 30%
- less computer use by a factor of 5

- usable with changing requirements
- rework effort reduced

- 5% as opposed to 42% took > 1 hour to change

Some Lessons Learned
Cleanroom/Reading by step-wise abstraction was effective and efficient
Reading appears to reduce the cost of change

Better training needed for reading methods and techniques

NEXT: Will it work again? Can we scale up more? Can we contract it out?
Try on larger projects, contracted projects

© Copyright 2002ESEG, UMD

EXPERIMENT
Multi-Project Analysis Study

Cleanroom in the SEL
Approaches:

Revised Cleanroom process vs. Standard SEL Approach

Compare with respect to:
effects on the effort distribution, cost, and reliability

Experimental design:
Apply to three more flight dynamics domain projects in the SEL

Environment:
NASA/ SEL
Projects: 22 KLOC (in-house)

160 KLOC (contractor)
140 KLOC (contractor)

in vivo, experts, descriptive

© Copyright 2002ESEG, UMD

Multi-Project Analysis Study
Cleanroom in the SEL

Major Results
Cleanroom was

- effective and efficient for up to ~ 150KLOC
- usable with changing requirements
- took second try to get really effective on contractor, large project

Some Lessons Learned

Cleanroom Reading by step-wise abstraction
- effective and efficient in the SEL
- takes more experience and support on larger, contractor projects
- appears to reduce the cost of change

Unit test benefits need further study

Better training needed for reading techniques

Better techniques for other documents, e.g., requirements, design, test plan

NEXT: Can we improve the reading techniques for requirements and design
documents?

Develop reading techniques and study effects in controlled experiments

© Copyright 2002ESEG, UMD

Scenario-Based Reading Definition

An approach to generating a family of reading techniques, called
operational scenarios, has been defined to be

- document and notation specific
- tailorable to the project and environment
- procedurally defined
- goal driven
- focused to provide a particular coverage of the document
- empirically verified to be effective for its use
- usable in existing methods, such as inspections

• These goals defines a set of guidelines/characteristics for a
process definition for reading techniques that can be studied
experimentally

© Copyright 2002ESEG, UMD

Scenario-Based Reading Definition

So far, we have developed five families of reading techniques
parameterized for use in different contexts and evaluated
experimentally in those contexts

They include:
perspective based reading:

for detecting defects in requirements documents in English
defect based reading:

for detecting defects in requirements documents in SCR
scope based reading:

for constructing designs from OO frameworks
use based reading:

for detecting anomalies in user interface web screens
horizontal/vertical reading:

for detecting defects in object oriented design in UML

© Copyright 2002ESEG, UMD

EXPERIMENTING
Blocked Subject-Project Study

Scenario-Based Reading

Approaches:
defect-based reading vs ad-hoc reading vs check-list reading

Compare with respect to:
fault detection effectiveness in the context of an inspection team

Experimental design:
Partial factorial design
Replicated twice
Subjects: 48 subjects in total

Environment:
University of Maryland
Two Requirements documents in SCR notation
Documents seeded with known defects
novice, in vitro, cause-effect

© Copyright 2002ESEG, UMD

EXPERIMENTING
Blocked Subject Project Study

Scenario-Based Reading

Approaches:
perspective-based reading vs NASA’s reading technique

Compare with respect to:
fault detection effectiveness in the context of an inspection team

Experimental design:
Partial factorial design
Replicated twice
Subjects: 25 subjects in total

Environment:
NASA/CSC SEL Environment
Requirements documents:

Two NASA Functional Specifications
Two Structured Text Documents
Documents seeded with known defects
expert, in vitro, cause-effect

© Copyright 2002ESEG, UMD

Blocked Subject Project Study
Scenario-Based Reading

Some Results

Scenario-Based Reading performed better than
Ad Hoc, Checklist, NASA Approach reading
especially when they were less familiar with the domain

Scenarios helped reviewers focus on specific fault classes
but were no less effective at detecting other faults

The relative benefit of Scenario-Based Reading is higher for teams

Some Lessons Learned
Need better tailoring of Scenario-Based Reading to the NASA

environment in terms of document contents, notation and perspectives

Need better training to stop experts from using their familiar technique

Next: Replicate these experiments in many different environments
- varying the context

© Copyright 2002ESEG, UMD

The Maturing of the Experimental Discipline
How is experimentation maturing?

Several of these experiments have been replicated
- under the same and differing contexts
- at a variety of organizations in different countries, e.g.,

University of Kaiserslautern, Germany
University of Bari, Italy
University of New South Wales, Australia
Bell Laboratories, USA
University of Trondheim, Norway
Bosch, Germany
Univerities of Sao Paolo and Rio deJaniero, Brazil

to better understand the reading variable

ISERN
organized explicitly to share knowledge and experiments
has membership in the U.S., Europe, Asia, and Australia
represents both industry and academia
supports the publication of artifacts and laboratory manuals

Its goal is to evolve software engineering knowledge over time,
based upon experimentation and learning

© Copyright 2002ESEG, UMD

Evolving Knowledge
Model Building, Experimenting, and Learning

Abstracting across Reading Experiments

We have generated useful empirical results for technique definition
guidance

• For a reviewer with an average experience level, a procedural
approach to defect detection is more effective than a less
procedural one.

• Procedural inspections, based upon specific goals, will find defects
related to those goals, so inspections can be customized.

• A set of readers of a software artifact are more effective in
uncovering defects when each uses a different and specific focus.

© Copyright 2002ESEG, UMD

Using Experimentation to Improve
Software at NASA/GSFC

E rror R ates (development)

0

2

4

6

8

10

Early Baseline
8 similar systems

Current
7 similar systems

Er
ro

rs
/K

LO
C

 (d
ev

el
op

ed
)

Average ~4.5

Average ~1Low 1.7

Low 0.2

High 2.4

High 8.9

0

200

400

600

800
Cost (staff months)

Early Baseline
8 similar systems

supporting 4 projects

Current
7 similar systems

supporting 4 projects

St
af

f m
on

th
s

Average ~490

Average ~210

Low 357

High 755

Low 98

High 277

R euse

Early Baseline
8 similar systems

Current
8 similar systems

%
 R

eu
se

FORTRAN
(3 systems)

Ada
(5 systems)

0

20

40

60

80

100

Average
~79%61

90

IE
E

E
39

Average
~20%

Early Baseline = 1985-1989
Current = 1990-1993

Decreased 75% Reduced 55%

Increased 300%

The Software Engineering Laboratory was awarded the first
IEEE Computer Society Award for Software Process Achievement in 1994

for demonstrable, sustained, measured, significant process improvement

© Copyright 2002ESEG, UMD

Using Experimentation to Improve
Software at NASA/GSFC

Continuous Improvement in the SEL

Decreased Development Defect rates by
75% (87 - 91) 37% (91 - 95)

Reduced Cost by
55% (87 - 91) 42% (91 - 95)

Improved Reuse by
300% (87 - 91) 8% (91 - 95)

Increased Functionality five-fold (76 - 92)

CSC
officially assessed as CMM level 5 and ISO certified (1998),
starting with SEL organizational elements and activities

Fraunhofer Center
for Experimental Software Engineering - Maryland created 1998

CeBaSE
Center for Empirically-Based Software Engineering created 2000

© Copyright 2002ESEG, UMD

Evolving Knowledge
Model Building, Experimenting, and Learning

CeBASE Project: Vision and Approach

The goal of the Center for empirically-Based Software Engineering
(CeBASE) is to accumulate empirical models to provide validated
guidelines for selecting techniques and models, recommend areas for
research, and support education

A first step is to build an empirical experience base
continuously evolving with empirical evidence
to help us identify what affects cost, reliability, schedule,...

To achieve this we are
Integrating existing data and models
Initially focusing on new results in two high-leverage areas

Defect Reduction, e. g. reading techniques (see top ten issues)
COTS Based Development (see top ten issues)

© Copyright 2002ESEG, UMD

Examples of Using Empirical Results
for development, research, education

Technique Tailoring
Is tailoring the reading process associated with an inspection worth the effort?

• Procedural inspections, based upon specific goals, will find defects related
to those goals, so inspections can be customized. (UMD)

Implications for empirically based software development process:
• The better you can articulate your goals, the more effectively you can

choose and tailor process.

Implications for software engineering research:
• It is important to empirically study the effects of processes on product

Implications for software engineering education:
• Don’t teach that there is a one size fits all process; teach how to tailor

processes

© Copyright 2002ESEG, UMD

Examples of Using Empirical Results
for development, research, education

Technique Selection Guidance
When should you use a procedural approach to code reviewing?

• For a reviewer with an average experience level, a procedural
approach to defect detection is more effective than a less procedural
one (UMD, USC)

Implications for empirically based software development process:
• Experts might be more effective working on their own but most people

should apply a procedural approach. Novices need training.

Implications for software engineering research:
• How can we improve document reading procedures based upon how

experts analyze documents?

Implications for software engineering education:
• Effective procedures that can be taught for reviewing documents

© Copyright 2002ESEG, UMD

Examples of Using Empirical Results
for development, research, education

Technique Selection Guidance
When are peer reviews more effective than functional testing?

• Peer reviews are more effective than functional testing for faults of
omission and incorrect specification (UMD, USC)

Implications for empirically based software development process:
• If, for a given project set, there is an expectation of a larger number of

faults of omission or incorrect facts than use peer reviews.

Implications for software engineering research:
• How can peer reviews be improved with better reading techniques for

faults of omission and incorrect fact?

Implications for software engineering education:
• Teach how to experiment with and choose the appropriate analytic

techniques

© Copyright 2002ESEG, UMD

Examples of Useful Empirical Results

Lifecycle Selection Guidance

Lifecycle Selection Guidance
• The sequential waterfall model is suitable if and only if

– The requirements are knowable in advance,
– The requirements have no unresolved, high-risk implications,
– The requirements satisfy all the key stakeholders’ expectations,
– A viable architecture for implementing the requirements is known,
– The requirements will be stable during development,
– There is enough calendar time to proceed sequentially. (USC)

• The evolutionary development model is suitable if and only if
– The initial release is good enough to keep the key stakeholders involved,
– The architecture is scalable to accommodate needed system growth,
– The operational user organizations can adapt to the pace of evolution,
– The evolution dimensions are compatible with legacy system

replacement,
– appropriate management, financial, and incentive structures are in place.

(USC)

© Copyright 2002ESEG, UMD

Conclusion

The software engineering discipline needs to
build software core competencies as part of overall business strategy
create organizations for continuous learning to improve software competence
generate a tangible corporate asset: an experience base of competencies
build an empirically-based, tailorable software development process

Experimentation can provide us with
- better scientific and engineering basis for the software
- better models of software processes, products, and environmental factors
- better understanding of the interactions of these models

Practitioners are provided with
- the ability to control and manipulate project solutions
- knowledge of what works and does not work and under what conditions

Researchers are provided laboratories for experimentation

